Posts Tagged ‘SPARQL’

From Logic to Ontology: The limit of “The Semantic Web”



(Some post are written in English and Spanish language) 


From Logic to Ontology: The limit of “The Semantic Web” 


If you read the next posts on this blog: 

Semantic Web

The Semantic Web

What is the Semantic Web, Actually?

The Metaweb: Beyond Weblogs. From the Metaweb to the Semantic Web: A Roadmap

Semantics to the people! ontoworld

What’s next for the Internet

Web 3.0: Update

How the Wikipedia 3.0: The End of Google? article reached 2 million people in 4 days!

Google vs Web 3.0

Google dont like Web 3.0 [sic] Why am I not surprised?

Designing a better Web 3.0 search engine

From semantic Web (3.0) to the WebOS (4.0)

Search By Meaning

A Web That Thinks Like You


The long-promised “semantic” web is starting to take shape

Start-Up Aims for Database to Automate Web Searching

Metaweb: a semantic wiki startup


The Semantic Web, Collective Intelligence and Hyperdata.

Informal logic 

Logical argument

Consistency proof 

Consistency proof and completeness: Gödel’s incompleteness theorems

Computability theory (computer science): The halting problem

Gödel’s incompleteness theorems: Relationship with computability

Non-formal or Inconsistency Logic: LACAN’s LOGIC. Gödel’s incompleteness theorems,

You will realize the internal relationship between them linked from Logic to Ontology.  

I am writing from now on an article about the existence of the semantic web.  

I will prove that it does not exist at all, and that it is impossible to build from machines like computers.  

It does not depend on the software and hardware you use to build it: You cannot do that at all! 

You will notice the internal relations among them, and the connecting thread is the title of this post: “Logic to ontology.”   

I will prove that there is no such construction, which can not be done from the machines, and that does not depend on the hardware or software used.  

More precisely, the limits of the semantic web are not set by the use of machines themselves and biological systems could be used to reach this goal, but as the logic that is being used to construct it does not contemplate the concept of time, since it is purely formal logic and metonymic lacks the metaphor, and that is what Gödel’s theorems remark, the final tautology of each construction or metonymic language (mathematical), which leads to inconsistencies. 

This consistent logic is completely opposite to the logic that makes inconsistent use of time, inherent of human unconscious, but the use of time is built on the lack, not on positive things, it is based on denials and absences, and that is impossible to reflect on a machine because of the perceived lack of the required self-awareness is acquired with the absence.  

The problem is we are trying to build an intelligent system to replace our way of thinking, at least in the information search, but the special nature of human mind is the use of time which lets human beings reach a conclusion, therefore does not exist in the human mind the halting problem or stop of calculation.  

So all efforts faced toward semantic web are doomed to failure a priori if the aim is to extend our human way of thinking into machines, they lack the metaphorical speech, because only a mathematical construction, which will always be tautological and metonymic, and lacks the use of the time that is what leads to the conclusion or “stop”.  

As a demonstration of that, if you suppose it is possible to construct the semantic web, as a language with capabilities similar to human language, which has the use of time, should we face it as a theorem, we can prove it to be false with a counter example, and it is given in the particular case of the Turing machine and “the halting problem”.  

Then as the necessary and sufficient condition for the theorem is not fulfilled, we still have the necessary condition that if a language uses time, it lacks formal logic, the logic used is inconsistent and therefore has no stop problem.

This is a necessary condition for the semantic web, but it is not enough and therefore no machine, whether it is a Turing Machine, a computer or a device as random as a black body related to physics field, can deal with any language other than mathematics language hence it is implied that this language is forced to meet the halting problem, a result of Gödel theorem.   

De la lógica a la ontología: El límite de la “web semántica”  

Si lee los siguientes artículos de este blog: 


Wikipedia 3.0: El fin de Google (traducción Spanish)


Lógica Consistente y completitud: Teoremas de la incompletitud de Gödel (Spanish)

Consistencia lógica (Spanish)

Teoría de la computabilidad. Ciencia de la computación.

Teoremas de la incompletitud de Gödel y teoría de la computación: Problema de la parada 

Lógica inconsistente e incompletitud: LOGICAS LACANIANAS y Teoremas de la incompletitud de Gödel (Spanish)  

Jacques Lacan (Encyclopædia Britannica Online)

Usted puede darse cuenta de las relaciones internas entre ellos, y el hilo conductor es el título de este mismo post: “de la lógica a la ontología”.  

Probaré que no existe en absoluto tal construcción, que no se puede hacer desde las máquinas, y que no depende ni del hardware ni del software utilizado.   

Matizando la cuestión, el límite de la web semántica está dado no por las máquinas y/o sistemas biológicos que se pudieran usar, sino porque la lógica con que se intenta construir carece del uso del tiempo, ya que la lógica formal es puramente metonímica y carece de la metáfora, y eso es lo que marcan los teoremas de Gödel, la tautología final de toda construcción y /o lenguaje metonímico (matemático), que lleva a contradicciones.  

Esta lógica consistente es opuesta a la lógica inconsistente que hace uso del tiempo, propia del insconciente humano, pero el uso del tiempo está construido en base a la falta, no en torno a lo positivo sino en base a negaciones y ausencias, y eso es imposible de reflejar en una máquina porque la percepción de la falta necesita de la conciencia de sí mismo que se adquiere con la ausencia.   

El problema está en que pretendemos construir un sistema inteligente que sustituya nuestro pensamiento, al menos en las búsquedas de información, pero la particularidad de nuestro pensamiento humano es el uso del tiempo el que permite concluir, por eso no existe en la mente humana el problema de la parada o detención del cálculo, o lo que es lo mismo ausencia del momento de concluir.  

Así que todos los esfuerzos encaminados a la web semántica están destinados al fracaso a priori si lo que se pretende es prolongar nuestro pensamiento humano en las máquinas, ellas carecen de discurso metafórico, pues sólo son una construcción matemática, que siempre será tautológica y metonímica, ya que además carece del uso del tiempo que es lo que lleva al corte, la conclusión o la “parada”.  

Como demostración vale la del contraejemplo, o sea que si suponemos que es posible construir la web semántica, como un lenguaje con capacidades similares al lenguaje humano, que tiene el uso del tiempo, entonces si ese es un teorema general, con un solo contraejemplo se viene abajo, y el contraejemplo está dado en el caso particular de la máquina de Turing y el “problema de la parada”.  

Luego no se cumple la condición necesaria y suficiente del teorema, nos queda la condición necesaria que es que si un lenguaje tiene el uso del tiempo, carece de lógica formal, usa la lógica inconsistente y por lo tanto no tiene el problema de la parada”, esa es condición necesaria para la web semántica, pero no suficiente y por ello ninguna máquina, sea de Turing, computador o dispositivo aleatorio como un cuerpo negro en física, puede alcanzar el uso de un lenguaje que no sea el matemático con la paradoja de la parada, consecuencia del teorema de Gödel.

Jacques Lacan (Encyclopædia Britannica Online)

Read Full Post »

Evolving Trends

July 19, 2006

Towards Intelligent Findability

(This post was last updated at 12:45pm EST, July 22, 06)

By Eric Noam Rodriguez (versión original en español CMS Semántico)

Editing and Addendum by Marc Fawzi

A lot of buzz about Web 3.0 and Wikipedia 3.0 has been generagted lately by Marc Fawzi through this blog, so I’ve decided that for my first post here I’d like to dive into this idea and take a look at how to build a Semantic Content Management System (CMS). I know this blog has had a more of a visionary, psychological and sociological theme (i.e., the vision for the future and the Web’s effect on society, human relationships and the individual himself), but I’d like to show the feasibility of this vision by providing some technical details.



We want a CMS capable of building a knowledge base (that is a set of domain-specific ontologies) with formal deductive reasoning capabilities.



  1. A semantic CMS framework.
  2. An ontology API.
  3. An inference engine.
  4. A framework for building info-agents.



The general idea would be something like this:

  1. Users use a semantic CMS like Semantic MediaWiki to enter information as well as semantic annotations (to establish semantic links between concepts in the given domain on top of the content) This typically produces an informal ontology on top of the information, which, when combined with domain inference rules and the query structures (for the particular schema) that are implemented in an independent info agent or built into the CMS, would give us a Domain Knowledge Database. (Alternatively, we can have users enter information into a non-semantic CMS to create content based on a given doctype or content schema and then front-end it with an info agent that works with a formal ontology of the given domain, but we would then need to perform natural language processing, including using statistical semantic models, since we would lose the certainty that would normally be provided by the semantic annotations that, in a Semantic CMS, would break down the natural language in the information to a definite semantic structure.)
  2. Another set of info agents adds to our knowledge base inferencing-based querying services for information on the Web or other domain-specific databases. User entered information plus information obtained from the web makes up our Global Knowledge Database.
  3. We provide a Web-based interface for querying the inference engine.

Each doctype or schema (depending on the CMS of your choice) will have a more or less direct correspondence with our ontologies (i.e. one schema or doctype maps with one ontology). The sum of all the content of a particular schema makes up a knowledge-domain which when transformed into a semantic language like (RDF or more specifically OWL) and combined with the domain inference rules and the query structures (for the particular schema) constitute our knowledge database. The choice of CMS is not relevant as long as you can query its contents while being able to define schemas. What is important is the need for an API to access the ontology. Luckily projects like JENA fills this void perfectly providing both an RDF and an OWL API for Java.

In addition, we may want an agent to add or complete our knowledge base using available Web Services (WS). I’ll assume you’re familiarized with WS so I won’t go into details.


Now, the inference engine would seem like a very hard part. It is. But not for lack of existing technology: the W3C already have a recommendation language for querying RDF (viz. a semantic language) known as SPARQL (http://www.w3.org/TR/rdf-sparql-query/) and JENA already has a SPARQL query engine.

The difficulty lies in the construction of ontologies which would have to be formal (i.e. consistent, complete, and thoroughly studied by experts in each knowledge-domain) in order to obtain powerful deductive capabilities (i.e. reasoning).


We already have technology powerful enough to build projects such as this: solid CMS, standards such as RDF, OWL, and SPARQL as well as a stable framework for using them such as JENA. There are also many frameworks for building info-agents but you don’t necessarily need a specialized framework, a general software framework like J2EE is good enough for the tasks described in this post.

All we need to move forward with delivering on the Web 3.0 vision (see 1, 2, 3) is the will of the people and your imagination.


In the diagram below, the domain-specific ontologies (OWL 1 … N) could be all built by Wikipedia (see Wikipedia 3.0) since they already have the largest online database of human knowledge and the domain experts among their volunteers to build the ontologies for each domain of human knowledge. One possible way is for Wikipedia will build informal ontologies using Semantic MediaWiki (as Ontoworld is doing for the Semantic Web domain of knowledge) but Wikipedia may wish to wait until they have the ability to build formal ontologies, which would enable more powerful machine-reasoning capabilities.

[Note: The ontologies simply allow machines to reason about information. They are not information but meta-information. They have to be formally consistent and complete for best results as far as machine-based reasoning is concerned.]

However, individuals, teams, organizations and corporations do not have to wait for Wikipedia to build the ontologies. They can start building their own domain-specific ontologies (for their own domains of knowledge) and use Google, Wikipedia, MySpace, etc as sources of information. But as stated in my latest edit to Eric’s post, we would have to use natural language processing in that case, including statistical semantic models, as the information won’t be pre-semanticized (or semantically annotated), which makes the task more dificult (for us and for the machine …)

What was envisioned in the Wikipedia 3.0: The End of Google? article was that since Wikipedia has the volunteer resources and the world’s largest database of human knowledge then it will be in the powerful position of being the developer and maintainer of the ontologies (including the semantic annotations/statements embedded in each page) which will become the foundation for intelligence (and “Intelligent Findability”) in Web 3.0.

This vision is also compatible with the vision for P2P AI (or P2P 3.0), where people will run P2P inference engines on their PCs that communicate and collaborate with each other and that tap into information form Google, Wikipedia, etc, which will ultimately push Google and central search engines down to the commodity layer (eventually making them a utility business just like ISPs.)



  1. Wikipedia 3.0: The End of Google? June 26, 2006
  2. Wikipedia 3.0: El fin de Google (traducción) July 12, 2006
  3. Web 3.0: Basic Concepts June 30, 2006
  4. P2P 3.0: The People’s Google July 11, 2006
  5. Why Net Neutrality is Good for Web 3.0 July 15, 2006
  6. Intelligence (Not Content) is King in Web 3.0 July 17, 2006
  7. Web 3.0 Blog Application July 18, 2006
  8. Semantic MediaWiki July 12, 2006
  9. Get Your DBin July 12, 2006

Enjoyed this analysis? You may share it with others on:

digg.png newsvine.png nowpublic.jpg reddit.png blinkbits.png co.mments.gif stumbleupon.png webride.gif del.icio.us


Semantic Web, Web strandards, Trends, OWL, innovation, Startup, Google, GData, inference engine, AI, ontology, Semantic Web, Web 2.0, Web 2.0, Web 3.0, Web 3.0, Google Base, artificial intelligence, AI, Wikipedia, Wikipedia 3.0, Ontoworld, Wikipedia AI, Info Agent, Semantic MediaWiki, DBin, P2P 3.0, P2P AI, AI Matrix, P2P Semantic Web inference Engine, semantic blog, intelligent findability, JENA, SPARQL, RDF, OWL


Read Full Post »

 Application Development

SPARQL Will Make the Web Shine
By Jim Rapoza

Read Full Post »

%d bloggers like this: