Feeds:
Posts
Comments

Posts Tagged ‘P2P Semantic Web inference Engine’

Evolving Trends

Web 3.0

Historically speaking, the first coining of Web 3.0 in conjunction with Semantic Web and/or AI agents and the first coining of  Web 3.0 in conjunction with Wikipedia and/or Google was made in the Wikipedia 3.0: The End of Google? article, which was published on Evolving Trends (this blog) on June 26, ‘06.

June 28, ‘06: Here’s what a fellow blogger, who had reviewed the Wikipedia 3.0 article, had to say:

“[…] But there it is. That was then. Now, it seems, the rage is Web 3.0. It all started
with this article here addressing the Semantic Web, the idea that a new organizational
structure for the web ought to be based on concepts that can be interpreted. The idea is
to help computers become learning machines, not just pattern matchers and calculators. […]“

June 28, ‘06: A fellow blogger wrote:

“This is the first non-sarcastic reference to Web 3.0 I’ve seen in the wild”

As of Jan 25, there are 11,000 links to Evolving Trends from blogs, forums and news sites pointing to the Wikipedia 3.0 article.

Jan 25, ‘07: A fellow blogger wrote:

“In 2004 I with my friend Aleem worked on idea of Semantic Web (as our senior project), and now I have been hearing news of Web 3.0. I decided to work on the idea further in 2005, and may be we could have made a very small scaled 4th generation search engine. Though this has never become reality but now it seems it’s hot time for putting Semantics and AI into web. Reading about Web 3.0 again thrilled me with the idea. [Wikia] has decided to jump into search engines and give Google a tough time :). So I hope may be I get a chance to become part of this Web 3.0 and make information retreival better.”

Alexa graph

According to Alexa the Wikipedia 3.0: The End of Google? article estimated penetration peaked on June 28 at a ratio of 650 per each 1,000,000 people. Based on an estimated number of 1,000,000,000 Web users, this means that it reached 650,000 people on June 28, and other hundreds of thousands of people on June 26, 27, 29, 30. This includes people who read the article at about 6,000 sites (according to MSN) that had linked to Evolving Trends. Based on the Alexa graph, we could estimate that the article reach close to 2 million people in the first 4.5 days of its release.

Update on Alexa Statistics (Sep. 18, 2008): some people have pointed out (independently with respect to their own experience) that Alexa’s statistics are skewed and not very reliable. As far as the direct hits to the on this blog they’re in the 200,000 range as of this writing.


Note: the term “Web 3.0″ is the dictionary word “Web” followed by the number “3″, a decimal point and the number “0.” As such, the term itself cannot and should not have any commercial significance in any context.  

Update on how the Wikipedia 3.0 vision is spreading:


Update on how Google is hopelessly attempting to co-opt the Wikipedia 3.0 vision:  

Web 3D + Semantic Web + AI as Web 3.0:  

Here is the original article that gave birth to the Web 3.0 vision:

3D Web + Semantic Web + AI *

The above mentioned Web 3D + Semantic Web + AI vision which preceded the Wikipeda 3.0 vision received much less attention because it was not presented in a controversial manner. This fact was noted as the biggest flaw of social bookmarking site digg which was used to promote this article.

Developers:

Feb 5, ‘07: The following external reference concerns the use of rule-based inference engines and ontologies in implementing the Semantic Web + AI vision (aka Web 3.0):

  1. Description Logic Programs: Combining Logic Programs with Description Logic (note: there are better, simpler ways of achieving the same purpose.)

Jan 7, ‘07: The following Evolving Trends post discussing current state of semantic search engines and ways to improve the design:

  1. Designing a Better Web 3.0 Search Engine

The idea described in this article was adopted by Hakia after it was published here, so this article may be considered as prior art.

June 27, ‘06: Semantic MediaWiki project, enabling the insertion of semantic annotations (or metadata) into Wikipedia content (This project is now hosted by Wikia, Wikipedia founder Jimmy wales’ private venture, and may benefit Wikia instead of Wikipedia, which is why I see it as a conflict of interest.)

Bloggers:

This post provides the history behind use of the term Web 3.0 in the context of the Semantic Web and AI.

This post explains the accidental way in which this article reaching 2 million people in 4 days.


Web 3.0 Articles on Evolving Trends

Noteworthy mentions of the Wikipedia 3.0 article:

Tags:

Semantic Web, Web strandards, Trends, OWL, Googleinference, inference engine, AI, ontology, Semanticweb, Web 2.0, Web 2.0, Web 3.0, Web 3.0, Wikipedia, Wikipedia 3.0Wikipedia AI, P2P 3.0, P2P AI, P2P Semantic Web inference Engineintelligent findability

Evolving Trends is Powered by +[||||]- 42V

Read Full Post »

Evolving Trends

July 17, 2006

Intelligence (Not Content) is King in Web 3.0

Observation

  1. There’s an enormous amount of free content on the Web.
  2. Pirates will aways find ways to share copyrighted content, i.e. get content for free.
  3. There’s an exponential growth in the amount of free, user-generated content.
  4. Net Neutrality (or the lack of a two-tier Internet) will only help ensure the continuance of this trend.
  5. Content is is becoming so commoditized that it only costs us the monthly ISP fee to access.

Conslusions (or Hypotheses)

The next value paradigm in the content business is going to be about embedding “intelligent findability” into the content layer, by using a semantic CMS (like Semantic MediaWiki, that enables domain experts to build informal ontologies [or semantic annotations] on top of the information) and by adding inferencing capabilities to existing search engines. I know this represents less than the full vision for Web 3.0 as I’ve outlined in the Wikipedia 3.0 and Web 3.0 articles but it’s a quantum leap above and beyond the level of intelligence that exists today within the content layer. Also, semantic CMS can be part of P2P Semantic Web Inference Engine applications that would push central search model’s like Google’s a step closer to being a “utility” like transport, unless Google builds their own AI, which would then have to compete with the people’s P2P version (see: P2P 3.0: The People’s Google and Get Your DBin.)

In other words, “intelligent findability” NOT content in itself will be King in Web 3.0.

Related

  1. Towards Intelligent Findability
  2. Wikipedia 3.0: The End of Google?
  3. Web 3.0: Basic Concepts
  4. P2P 3.0: The People’s Google
  5. Why Net Neutrality is Good for Web 3.0
  6. Semantic MediaWiki
  7. Get Your DBin

Posted by Marc Fawzi

Enjoyed this analysis? You may share it with others on:

digg.png newsvine.png nowpublic.jpg reddit.png blinkbits.png co.mments.gif stumbleupon.png webride.gif del.icio.us

Read Full Post »

Evolving Trends

July 12, 2006

Wikipedia 3.0: El fin de Google (traducción)

Wikipedia 3.0: El fin de Google (traducción)

Translation kindly provided by Eric Rodriguez

/*

Desarrolladores: Este es el nuevo proyecto open source Semantic MediaWiki.

Bloggers: Este post explica la curiosa historia sobre como este articulo alcanzó 33,000 lectores solo en las primeras 24 horas desde su publicación, a través de digg. Este post explica cuál es el problema con digg y la Web 2.0 y como solucionarlo.

Relacionado:

  1. All About Web 3.0
  2. P2P 3.0: The People’s Google
  3. Google Dont Like Web 3.0 [sic]
  4. For Great Justice, Take Off Every Digg
  5. Reality as a Service (RaaS): The Case for GWorld
  6. From Mediocre to Visionary

*/

por Marc Fawzi de Evolving Trends

Versión española (por Eric Rodriguez de Toxicafunk)

La Web Semántica (o Web 3.0) promete “organizar la información mundial” de una forma dramáticamente más lógica que lo que Google podría lograr con su diseño de motor actual. Esto es cierto desde el punto de vista de la comprensión por parte de las maquinas versus la humana. La Web Semántica requiere del uso de un lenguaje ontológico declarativo, como lo es OWL, para producir ontologías específicas de dominio que las máquinas pueden usar para razonar sobre la información y de esta forma alcanzar nuevas conclusiones, en lugar de simplemente buscar / encontrar palabras claves.

Sin embargo, la Web Semántica, que se encuentra todavía en una etapa de desarrollo en la que los investigadores intentan definir que modelo es el mejor y cual tiene mayor usabilidad, requeriría la participación de miles de expertos en distintos campos por un periodo indefinido de tiempo para poder producir las ontologías específicas de dominio necesarias para su funcionamiento.

Las maquinas (o más bien el razonamiento basado en maquinas, también conocido como Software IA o ‘agentes de información’) podrían entonces usar las laboriosas –mas no completamente manuales- ontologías elaboradas para construir una vista (o modelo formal) sobre como los términos individuales, en un determinado conjunto de información, se relacionan entre sí. Tales relaciones se pueden considerar como axiomas (premisas básicas), que junto con las reglas que gobiernan el proceso de inferencia permiten a la vez que limitan la interpretación (y el uso correctamente-formado) de dichos términos por parte de los agentes de información, para poder razonar nuevas conclusiones basándose en la información existente, es decir, pensar. En otras palabras, se podría usar software para generar teoremas (proposiciones formales demostrables basadas en axiomas y en las reglas de inferencia), permitiendo así el razonamiento deductivo formal a nivel de máquinas. Y dado que una ontología, tal como se describe aquí, se trata de un enunciado de Teoría Lógica, dos o más agentes de información procesando la misma ontología de un dominio específico serán capaces de colaborar y deducir la respuesta a una query (búsqueda o consulta a una base de datos), sin ser dirigidos por el mismo software.

De esta forma, y como se ha establecido, en la Web Semántica los agentes basados en maquina (o un grupo colaborador de agentes) serán capaces de entender y usar la información traduciendo conceptos y deduciendo nueva información en lugar de simplemente encontrar palabras clave.

Una vez que las máquinas puedan entender y usar la información, usando un lenguaje estándar de ontología, el mundo nuca volverá a ser el mismo. Será posible tener un agente de información (o varios) entre tu ‘fuerza laboral‘ virtual aumentada por IA, cada uno teniendo acceso a diferentes espacios de dominio especifico de comprensión y todos comunicándose entre si para formar una conciencia colectiva.

Podrás pedirle a tu agente o agentes de información que te encuentre el restaurante más cercano de cocina Italiana, aunque el restaurante más cercano a ti se promocione como un sitio para Pizza y no como un restaurante Italiano. Pero este es solo un ejemplo muy simple del razonamiento deductivo que las máquinas serán capaces de hacer a partir de la información existente.

Implicaciones mucho más sorprendentes se verán cuando se considere que cada área del conocimiento humano estará automáticamente al alcance del espacio de comprensión de tus agentes de información. Esto es debido a que cada agente se puede comunicar con otros agentes de información especializados en diferentes dominios de conocimiento para producir una conciencia colectiva (usando la metáfora Borg) que abarca todo el conocimiento humano. La “mente” colectiva de dichos agentes-como-el-Borg conformara la Maquina Definitiva de Respuestas, desplazando fácilmente a Google de esta posición, que no ocupa enteramente.

El problema con la Web Semántica, aparte de que los investigadores siguen debatiendo sobre que diseño e implementación de modelo de lenguaje de ontología (y tecnologías asociadas) es el mejor y el más usable, es que tomaría a miles o incluso miles de miles de personas con vastos conocimientos muchos años trasladar el conocimiento humano a ontologías especificas de dominio.

Sin embargo, si en algún punto tomáramos la comunidad Wikipedia y les facilitásemos las herramientas y los estándares adecuados con que trabajar (sean estos existentes o a desarrollar en el futuro), de forma que sea posible para individuos razonablemente capaces reducir el conocimiento humano en ontologías de dominios específicos, entonces el tiempo necesario para hacerlo se vería acortado a unos cuantos años o posiblemente dos

El surgimiento de una Wikipedia 3.0 (en referencia a Web 3.0, nombre dado a la Web Semántica) basada en el modelo de la Web Semántica anunciaría el fin de Google como la Maquina Definitiva de Respuestas. Este sería remplazado por “WikiMind” (WikiMente) que no sería un simple motor de búsqueda como Google sino un verdadero Cerebro Global: un poderoso motor de inferencia de dominios, con un vasto conjunto de ontologías (a la Wikipedia 3.0) cubriendo todos los dominios de conocimiento humano, capaz de razonar y deducir las respuestas en lugar de simplemente arrojar cruda información mediante el desfasado concepto de motor de búsqueda.

Notas
Tras escribir el post original descubrí que la aplicación Wikipedia, también conocida como MeadiaWiki que no ha de confundirse con Wikipedia.org, ya ha sido usado para implementar ontologías. El nombre que han seleccionado es Ontoworld. Me parece que WikiMind o WikiBorg hubiera sido un nombre más atractivo, pero Ontoworld también me gusta, algo así como “y entonces descendió al mundo,” (1) ya que se puede tomar como una referencia a la mente global que un Ontoworld capacitado con la Web Semántica daría a lugar.

En tan solo unos cuantos años la tecnología de motor e búsqueda que provee a Google casi todos sus ingresos/capital, seria obsoleta… A menos que tuvieran un contrato con Ontoworld que les permitiera conectarse a su base de datos de ontologías añadiendo así la capacidad de motor de inferencia a las búsquedas de Google.

Pero lo mismo es cierto para Ask,com y MSN y Yahoo.

A mi me encantaría ver más competencia en este campo, y no ver a Google o cualquier otra compañía establecerse como líder sobre los otros.

La pregunta, usando términos Churchilianos, es si la combinación de Wikipedia con la Web Semántica significa el principio del fin para Google o el fin del principio. Obviamente, con miles de billones de dólares con dinero de sus inversionistas en juego, yo opinaría que es lo último. Sin embargo, si me gustaría ver que alguien los superase (lo cual es posible en mi opinión).

(1) El autor hace referencia al juego de palabra que da el prefijo Onto de ontología que suena igual al adverbio unto en ingles. La frase original es “and it descended onto the world,”.

Aclaración
Favor observar que Ontoworld, que implementa actualmente las ontologías, se basa en la aplicación “Wikipedia” (también conocida como MediaWiki) que no es lo mismo que Wikipedia.org.

Así mismo, espero que Wikipedia.org utilice su fuerza de trabajo de voluntarios para reducir la suma de conocimiento humano que se ha introducido en su base de datos a ontologías de dominio específico para la Web Semántica (Web 3.0) y por lo tanto, “Wikipedia 3.0”.

Respuesta a Comentarios de los Lectores
Mi argumento es que Wikipedia actualmente ya cuenta con los recursos de voluntarios para producir las ontologías para cada uno de los dominios de conocimiento que actualmente cubre y que la Web Semántica tanto necesita, mientras que Google no cuenta con tales recursos, por lo que dependería de Wikipedia.

Las ontologías junto con toda la información de la Web, podrán ser accedidas por Google y los demás pero será Wikipedia quien quede a cargo de tales ontologías debido a que actualmente Wikipedia ya cubre una enorme cantidad de dominios de conocimiento y es ahí donde veo el cambio en el poder.

Ni Google ni las otras compañías posee el recurso humano (los miles de voluntarios con que cuenta Wikipedia) necesario para crear las ontologías para todos los dominios de conocimiento que Wikipedia ya cubre. Wikipedia si cuenta con tales recursos y además esta posicionada de forma tal que puede hacer trabajo mejor y más efectivo que cualquier otro. Es difícil concebir como Google lograría crear dichas ontologías (que crecen constantemente tanto en numero como en tamaño) dado la cantidad de trabajo que se requiere. Wikipedia, en cambio, puede avanzar de forma mucho más rápida gracias a su masiva y dedicada fuerza de voluntarios expertos.

Creo que la ventaja competitiva será para quien controle la creación de ontologías para el mayor numero de dominios de conocimiento (es decir, Wikipedia) y no para quien simplemente acceda a ellas (es decir, Google).

Existen muchos dominios de conocimiento que Wikipedia todavía no cubre. En esto Google tendría una oportunidad pero solamente si las personas y organizaciones que producen la información hicieran también sus propias ontologías, tal que Google pudiera acceder a ellas a través de su futuro motor de Web Semántica. Soy de la opinión que esto será así en el futuro pero que sucederá poco a poco y que Wikipedia puede tener listas las ontologías para todos los dominios de conocimiento con que ya cuenta mucho más rápido además de contar con la enorme ventaja de que ellos estarían a cargo de esas ontologías (la capa básica para permitir la IA).

Todavía no esta claro, por supuesto, si la combinación de Wikipedia con la Web Semántica anuncia el fin de Google o el fin del principio. Como ya mencioné en el artículo original. Me parece que es la última opción, y que la pregunta que titula de este post, bajo el presente contexto, es meramente retórica. Sin embargo, podría equivocarme en mi juicio y puede que Google de paso a Wikipedia como la maquina definitiva de respuestas mundial.

Después de todo, Wikipedia cuenta con “nosotros”. Google no. Wikipedia deriva su de poder de “nosotros”. Google deriva su poder de su tecnología y su inflado precio de mercado. ¿Con quien contarías para cambiar el mundo?

Respuesta a Preguntas Básicas por parte de los Lectores
El lector divotdave formulá unas cuantas preguntas que me parecen de naturaleza básica (es decir, importante). Creo que más personas se estarán preguntando las mismas cuestiones por lo que las incluyo con sus respectivas respuestas.

Pregunta:
¿Como distinguir entre buena y mala información? Como determinar que partes del conocimiento humano aceptar y que parte rechazar?

Respuesta:
No es necesario distinguir entre buena y mala información (que no ha de confundirse con bien-formada vs. mal-formada) si se utiliza una fuente de información confiable (con ontologías confiables asociadas). Es decir, si la información o conocimiento que se busca se puede derivar de Wikipedia 3.0, entonces se asume que la información es confiable.

Sin embargo, con respecto a como conectar los puntos al devolver información o deducir respuestas del inmenso mar de información que va más allá de Wikipedia, entonces la pregunta se vuelve muy relevante. Como se podría distinguir la buena información de la mala de forma que se pueda producir buen conocimiento (es decir, comprender información o nueva información producida a través del razonamiento deductivo basado en la información existente).

Pregunta:
Quien, o qué según sea el caso, determina que información es irrelevante para mí como usuario final?

Respuesta:
Esta es una buena pregunta que debe ser respondida por los investigadores que trabajan en los motores IA para la Web 3.0.

Será necesario hacer ciertas suposiciones sobre que es lo que se está preguntando. De la misma forma en que tuve que suponer ciertas cosas sobre lo que realmente me estabas preguntando al leer tu pregunta, también lo tendrán que hacer los motores IA, basados en un proceso cognitivo muy similar al nuestro, lo cual es tema para otro post, pero que ha sido estudiado por muchos investigadores IA.

Pregunta:
¿Significa esto en última instancia que emergerá un todopoderoso* estándar al cual toda la humanidad tendrá que adherirse (por falta de información alternativa)?

Respuesta:
No existe la necesidad de un estándar, excepto referente al lenguaje en el que se escribirán las ontologías (es decir, OWL, OWL-DL. OWL Full, etc.). Los investigadores de la Web Semántica intentan determinar la mejor opción, y la más usable, tomando en consideración el desempeño humano y de las máquinas al construir y –exclusivamente en el último caso- interpretar dichas ontologías.

Dos o más agentes de información que trabajen con la misma ontología especifica de dominio pero con diferente software (diferente motor IA) pueden colaborar entre ellos. El único estándar necesario es el lenguaje de la ontología y las herramientas asociadas de producción.

Anexo

Sobre IA y el Procesamiento del Lenguaje Natural

Me parece que la primera generación de IA que será usada por la Web 3.0 (conocido como Web Semántica) estará basada en motores de inferencia relativamente simples (empleando enfoques tanto algorítmicos como heurísticas) que no intentarán ningún tipo de procesamiento de lenguaje natural. Sin embargo, si mantendrán las capacidades de razonamiento deductivo formal descritas en este articulo.

Sobre el debate acerca de La Naturaleza y Definición de IA

La introducción de la IA en el ciber-espacio se hará en primer lugar con motores de inferencia (usando algoritmos y heurística) que colaboren de manera similar al P2P y que utilicen ontologías estándar. La interacción paralela entre cientos de millones de Agentes IA ejecutándose dentro de motores P2P de IA en las PCs de los usuarios dará cabida al complejo comportamiento del futuro cerebro global.

2 Comments »

  1. […] Acá un recorte directo de la traducción del articulo original. (perdí mucho tiempo tratando de entenderlo, se nota?) por Marc Fawzi de Evolving Trends […]Pingback by DxZone 2.0 (beta) – DxBlog » Blog Archive » Web 3.0? — August 7, 2006 @ 9:03 pm
  2. Es muy interesante. Creo que el artículo de Wikipedia sobre Web 2.0 complementa muy bien este trabajo:

    Bien podría hablarse de la Web 3.0 para la Web semántica. Pero una diferencia fundamental entre ambas versiones de web (2.0 y 3.0) es el tipo de participante. La 2.0 tiene como principal protagonista al usuario humano que escribe artículos en su blog o colabora en un wiki. El requisito es que además de publicar en HTML emita parte de sus aportaciones en XML/RDF (RSS, ATOM, etc.). La 3.0, sin embargo, está orientada hacia el protagonismo de procesadores mecánicos que entiendan de lógica descriptiva en OWL. La 3.0 está concebida para que las máquinas hagan el trabajo de las personas a la hora de procesar la avalancha de información publicada en la Web.

    La clave está aquí al final: la Web 3.0 será protagonizada por robots inteligentes y dispositivos ubícuos. De esto ya ha dicho algo O’Reilly.

    Desde luego estoy de acuerdo con el autor, la Wikipedia semántica será la bomba, pero me temo que será un subconjunto de la social o folcsonómica, porque la semántica tiene limitaciones. Debería explicar esto en algún artículo. Tal vez lo haga en las páginas de nuestro proyecto Wikiesfera, que para eso es más sexy un wiki que un blog. 😉

    Gracias por la traducción.

    Comment by Joseba — November 30, 2006 @ 1:19 am

RSS feed for comments on this post. TrackBack URI

Leave a comment

Read Full Post »

Evolving Trends

July 29, 2006

Search By Meaning

I’ve been working on a pretty detailed technical scheme for a “search by meaning” search engine (as opposed to [dumb] Google-like search by keyword) and I have to say that in conquering the workability challenge in my limited scope I can see the huge problem facing Google and other Web search engines in transitioning to a “search by meaning” model.

However, I also do see the solution!

Related

  1. Wikipedia 3.0: The End of Google?
  2. P2P 3.0: The People’s Google
  3. Intelligence (Not Content) is King in Web 3.0
  4. Web 3.0 Blog Application
  5. Towards Intelligent Findability
  6. All About Web 3.0

Beats

42. Grey Cell Green

Posted by Marc Fawzi

Tags:

Semantic Web, Web strandards, Trends, OWL, innovation, Startup, Evolution, Google, GData, inference, inference engine, AI, ontology, Semanticweb, Web 2.0, Web 2.0, Web 3.0, Web 3.0, Google Base, artificial intelligence, AI, Wikipedia, Wikipedia 3.0, collective consciousness, Ontoworld, Wikipedia AI, Info Agent, Semantic MediaWiki, DBin, P2P 3.0, P2P AI, AI Matrix, P2P Semantic Web inference Engine, Global Brain, semantic blog, intelligent findability, search by meaning

5 Comments »

  1. context is a kind of meaning, innit?

    Comment by qxcvz — July 30, 2006 @ 3:24 am

  2. You’re one piece short of Lego Land.

    I have to make the trek down to San Diego and see what it’s all about.

    How do you like that for context!? 🙂

    Yesterday I got burnt real bad at Crane beach in Ipswich (not to be confused with Cisco’s IP Switch.) The water was freezing. Anyway, on the way there I was told about the one time when the kids (my nieces) asked their dad (who is a Cisco engineer) why Ipswich is called Ipswich. He said he didn’t know. They said “just make up a reason!!!!!!” (since they can’t take “I don’t know” for an answer) So he said they initially wanted to call it PI (pie) but decided it to switch the letters so it became IPSWICH. The kids loved that answer and kept asking him whenever they had their friends on a beach trip to explain why Ipswich is called Ipswich. I don’t get the humor. My logic circuits are not that sensitive. Somehow they see the illogic of it and they think it’s hilarious.

    Engineers and scientists tend to approach the problem through the most complex path possible because that’s dictated by the context of their thinking, but genetic algorithms could do a better job at that, yet that’s absolutely not what I’m hinting is the answer.

    The answer is a lot more simple (but the way simple answers are derived is often thru deep thought that abstracts/hides all the complexity)

    I’ll stop one piece short cuz that will get people to take a shot at it and thereby create more discussion around the subject, in general, which will inevitably get more people to coalesce around the Web 3.0 idea.

    [badly sun burnt face] + ] … It’s time to experiment with a digi cam … i.e. towards a photo + audio + web 3.0 blog!

    An 8-mega pixel camera phone will do just fine! (see my post on tagging people in the real world.. it is another very simple idea but I like this one much much better.)

    Marc

    p.s. my neurons are still in perfectly good order but I can’t wear my socks!!!

    Comment by evolvingtrends — July 30, 2006 @ 10:19 am

  3. Hey there, Marc.
    Have talked to people about semantic web a bit more now, and will get my thoughts together on the subject before too long. The big issue, basically, is buy-in from the gazillions of content producers we have now. My impression is the big business will lead on semantic web, because it’s more useful to them right now, rather than you or I as ‘opinion/journalist’ types.

    Comment by Ian — August 7, 2006 @ 5:06 pm

  4. Luckily, I’m not an opinion journalist although I could easily pass for one.

    You’ll see a lot of ‘doing’ from us now that we’re talking less 🙂

    BTW, just started as Chief Architect with a VC funded Silicon Valley startup so that’s keeping me busy, but I’m recruiting developers and orchestrating a P2P 3.0 / Web 3.0 / Semantic Web (AI-enabled) open source project consistent with the vision we’ev outlined. 

    :] … dzzt.

    Marc

    Comment by evolvingtrends — August 7, 2006 @ 5:10 pm

  5. Congratulations on the job, Marc. I know you’re a big thinker and I’m delighted to hear about that.

    Hope we’ll still be able to do a little “fencing” around this subject!

    Comment by Ian — August 7, 2006 @ 7:01 pm

RSS feed for comments on this post. TrackBack URI

Read Full Post »

  • My Dashboard
  • New Post
  • Evolving Trends

    July 20, 2006

    Google dont like Web 3.0 [sic]

    (this post was last updated at 9:50am EST, July 24, ‘06)

    Why am I not surprised?

    Google exec challenges Berners-Lee

    The idea is that the Semantic Web will allow people to run AI-enabled P2P Search Engines that will collectively be more powerful than Google can ever be, which will relegate Google to just another source of information, especially as Wikipedia [not Google] is positioned to lead the creation of domain-specific ontologies, which are the foundation for machine-reasoning [about information] in the Semantic Web.

    Additionally, we could see content producers (including bloggers) creating informal ontologies on top of the information they produce using a standard language like RDF. This would have the same effect as far as P2P AI Search Engines and Google’s anticipated slide into the commodity layer (unless of course they develop something like GWorld)

    In summary, any attempt to arrive at widely adopted Semantic Web standards would significantly lower the value of Google’s investment in the current non-semantic Web by commoditizing “findability” and allowing for intelligent info agents to be built that could collaborate with each other to find answers more effectively than the current version of Google, using “search by meaning” as opposed to “search by keyword”, as well as more cost-efficiently than any future AI-enabled version of Google, using disruptive P2P AI technology.

    For more information, see the articles below.

    Related

    1. Wikipedia 3.0: The End of Google?
    2. Wikipedia 3.0: El fin de Google (traducción)
    3. All About Web 3.0
    4. Web 3.0: Basic Concepts
    5. P2P 3.0: The People’s Google
    6. Intelligence (Not Content) is King in Web 3.0
    7. Web 3.0 Blog Application
    8. Towards Intelligent Findability
    9. Why Net Neutrality is Good for Web 3.0
    10. Semantic MediaWiki
    11. Get Your DBin

    Somewhat Related

    1. Unwisdom of Crowds
    2. Reality as a Service (RaaS): The Case for GWorld
    3. Google 2.71828: Analysis of Google’s Web 2.0 Strategy
    4. Is Google a Monopoly?
    5. Self-Aware e-Society

    Beats

    1. In the Hearts of the Wildmen

    Posted by Marc Fawzi

    Enjoyed this analysis? You may share it with others on:

    digg.png newsvine.png nowpublic.jpg reddit.png blinkbits.png co.mments.gif stumbleupon.png webride.gif del.icio.us

    Tags:

    Semantic Web, Web strandards, Trends, OWL, innovation, Startup, Evolution, Google, GData, inference, inference engine, AI, ontology, Semanticweb, Web 2.0, Web 2.0, Web 3.0, Web 3.0, Google Base, artificial intelligence, AI, Wikipedia, Wikipedia 3.0, collective consciousness, Ontoworld, Wikipedia AI, Info Agent, Semantic MediaWiki, DBin, P2P 3.0, P2P AI, AI Matrix, P2P Semantic Web inference Engine, semantic blog, intelligent findability, RDF

    Read Full Post »

    Evolving Trends

    July 12, 2006

    Wikipedia 3.0: El fin de Google (traducción)

    Wikipedia 3.0: El fin de Google (traducción)

    Translation kindly provided by Eric Rodriguez

    /*

    Desarrolladores: Este es el nuevo proyecto open source Semantic MediaWiki.

    Bloggers: Este post explica la curiosa historia sobre como este articulo alcanzó 33,000 lectores solo en las primeras 24 horas desde su publicación, a través de digg. Este post explica cuál es el problema con digg y la Web 2.0 y como solucionarlo.

    Relacionado:

    1. All About Web 3.0
    2. P2P 3.0: The People’s Google
    3. Google Dont Like Web 3.0 [sic]
    4. For Great Justice, Take Off Every Digg
    5. Reality as a Service (RaaS): The Case for GWorld
    6. From Mediocre to Visionary

    */

    por Marc Fawzi de Evolving Trends

    Versión española (por Eric Rodriguez de Toxicafunk)

    La Web Semántica (o Web 3.0) promete “organizar la información mundial” de una forma dramáticamente más lógica que lo que Google podría lograr con su diseño de motor actual. Esto es cierto desde el punto de vista de la comprensión por parte de las maquinas versus la humana. La Web Semántica requiere del uso de un lenguaje ontológico declarativo, como lo es OWL, para producir ontologías específicas de dominio que las máquinas pueden usar para razonar sobre la información y de esta forma alcanzar nuevas conclusiones, en lugar de simplemente buscar / encontrar palabras claves.

    Sin embargo, la Web Semántica, que se encuentra todavía en una etapa de desarrollo en la que los investigadores intentan definir que modelo es el mejor y cual tiene mayor usabilidad, requeriría la participación de miles de expertos en distintos campos por un periodo indefinido de tiempo para poder producir las ontologías específicas de dominio necesarias para su funcionamiento.

    Las maquinas (o más bien el razonamiento basado en maquinas, también conocido como Software IA o ‘agentes de información’) podrían entonces usar las laboriosas –mas no completamente manuales- ontologías elaboradas para construir una vista (o modelo formal) sobre como los términos individuales, en un determinado conjunto de información, se relacionan entre sí. Tales relaciones se pueden considerar como axiomas (premisas básicas), que junto con las reglas que gobiernan el proceso de inferencia permiten a la vez que limitan la interpretación (y el uso correctamente-formado) de dichos términos por parte de los agentes de información, para poder razonar nuevas conclusiones basándose en la información existente, es decir, pensar. En otras palabras, se podría usar software para generar teoremas (proposiciones formales demostrables basadas en axiomas y en las reglas de inferencia), permitiendo así el razonamiento deductivo formal a nivel de máquinas. Y dado que una ontología, tal como se describe aquí, se trata de un enunciado de Teoría Lógica, dos o más agentes de información procesando la misma ontología de un dominio específico serán capaces de colaborar y deducir la respuesta a una query (búsqueda o consulta a una base de datos), sin ser dirigidos por el mismo software.

    De esta forma, y como se ha establecido, en la Web Semántica los agentes basados en maquina (o un grupo colaborador de agentes) serán capaces de entender y usar la información traduciendo conceptos y deduciendo nueva información en lugar de simplemente encontrar palabras clave.

    Una vez que las máquinas puedan entender y usar la información, usando un lenguaje estándar de ontología, el mundo nuca volverá a ser el mismo. Será posible tener un agente de información (o varios) entre tu ‘fuerza laboral‘ virtual aumentada por IA, cada uno teniendo acceso a diferentes espacios de dominio especifico de comprensión y todos comunicándose entre si para formar una conciencia colectiva.

    Podrás pedirle a tu agente o agentes de información que te encuentre el restaurante más cercano de cocina Italiana, aunque el restaurante más cercano a ti se promocione como un sitio para Pizza y no como un restaurante Italiano. Pero este es solo un ejemplo muy simple del razonamiento deductivo que las máquinas serán capaces de hacer a partir de la información existente.

    Implicaciones mucho más sorprendentes se verán cuando se considere que cada área del conocimiento humano estará automáticamente al alcance del espacio de comprensión de tus agentes de información. Esto es debido a que cada agente se puede comunicar con otros agentes de información especializados en diferentes dominios de conocimiento para producir una conciencia colectiva (usando la metáfora Borg) que abarca todo el conocimiento humano. La “mente” colectiva de dichos agentes-como-el-Borg conformara la Maquina Definitiva de Respuestas, desplazando fácilmente a Google de esta posición, que no ocupa enteramente.

    El problema con la Web Semántica, aparte de que los investigadores siguen debatiendo sobre que diseño e implementación de modelo de lenguaje de ontología (y tecnologías asociadas) es el mejor y el más usable, es que tomaría a miles o incluso miles de miles de personas con vastos conocimientos muchos años trasladar el conocimiento humano a ontologías especificas de dominio.

    Sin embargo, si en algún punto tomáramos la comunidad Wikipedia y les facilitásemos las herramientas y los estándares adecuados con que trabajar (sean estos existentes o a desarrollar en el futuro), de forma que sea posible para individuos razonablemente capaces reducir el conocimiento humano en ontologías de dominios específicos, entonces el tiempo necesario para hacerlo se vería acortado a unos cuantos años o posiblemente dos

    El surgimiento de una Wikipedia 3.0 (en referencia a Web 3.0, nombre dado a la Web Semántica) basada en el modelo de la Web Semántica anunciaría el fin de Google como la Maquina Definitiva de Respuestas. Este sería remplazado por “WikiMind” (WikiMente) que no sería un simple motor de búsqueda como Google sino un verdadero Cerebro Global: un poderoso motor de inferencia de dominios, con un vasto conjunto de ontologías (a la Wikipedia 3.0) cubriendo todos los dominios de conocimiento humano, capaz de razonar y deducir las respuestas en lugar de simplemente arrojar cruda información mediante el desfasado concepto de motor de búsqueda.

    Notas
    Tras escribir el post original descubrí que la aplicación Wikipedia, también conocida como MeadiaWiki que no ha de confundirse con Wikipedia.org, ya ha sido usado para implementar ontologías. El nombre que han seleccionado es Ontoworld. Me parece que WikiMind o WikiBorg hubiera sido un nombre más atractivo, pero Ontoworld también me gusta, algo así como “y entonces descendió al mundo,” (1) ya que se puede tomar como una referencia a la mente global que un Ontoworld capacitado con la Web Semántica daría a lugar.

    En tan solo unos cuantos años la tecnología de motor e búsqueda que provee a Google casi todos sus ingresos/capital, seria obsoleta… A menos que tuvieran un contrato con Ontoworld que les permitiera conectarse a su base de datos de ontologías añadiendo así la capacidad de motor de inferencia a las búsquedas de Google.

    Pero lo mismo es cierto para Ask,com y MSN y Yahoo.

    A mi me encantaría ver más competencia en este campo, y no ver a Google o cualquier otra compañía establecerse como líder sobre los otros.

    La pregunta, usando términos Churchilianos, es si la combinación de Wikipedia con la Web Semántica significa el principio del fin para Google o el fin del principio. Obviamente, con miles de billones de dólares con dinero de sus inversionistas en juego, yo opinaría que es lo último. Sin embargo, si me gustaría ver que alguien los superase (lo cual es posible en mi opinión).

    (1) El autor hace referencia al juego de palabra que da el prefijo Onto de ontología que suena igual al adverbio unto en ingles. La frase original es “and it descended onto the world,”.

    Aclaración
    Favor observar que Ontoworld, que implementa actualmente las ontologías, se basa en la aplicación “Wikipedia” (también conocida como MediaWiki) que no es lo mismo que Wikipedia.org.

    Así mismo, espero que Wikipedia.org utilice su fuerza de trabajo de voluntarios para reducir la suma de conocimiento humano que se ha introducido en su base de datos a ontologías de dominio específico para la Web Semántica (Web 3.0) y por lo tanto, “Wikipedia 3.0”.

    Respuesta a Comentarios de los Lectores
    Mi argumento es que Wikipedia actualmente ya cuenta con los recursos de voluntarios para producir las ontologías para cada uno de los dominios de conocimiento que actualmente cubre y que la Web Semántica tanto necesita, mientras que Google no cuenta con tales recursos, por lo que dependería de Wikipedia.

    Las ontologías junto con toda la información de la Web, podrán ser accedidas por Google y los demás pero será Wikipedia quien quede a cargo de tales ontologías debido a que actualmente Wikipedia ya cubre una enorme cantidad de dominios de conocimiento y es ahí donde veo el cambio en el poder.

    Ni Google ni las otras compañías posee el recurso humano (los miles de voluntarios con que cuenta Wikipedia) necesario para crear las ontologías para todos los dominios de conocimiento que Wikipedia ya cubre. Wikipedia si cuenta con tales recursos y además esta posicionada de forma tal que puede hacer trabajo mejor y más efectivo que cualquier otro. Es difícil concebir como Google lograría crear dichas ontologías (que crecen constantemente tanto en numero como en tamaño) dado la cantidad de trabajo que se requiere. Wikipedia, en cambio, puede avanzar de forma mucho más rápida gracias a su masiva y dedicada fuerza de voluntarios expertos.

    Creo que la ventaja competitiva será para quien controle la creación de ontologías para el mayor numero de dominios de conocimiento (es decir, Wikipedia) y no para quien simplemente acceda a ellas (es decir, Google).

    Existen muchos dominios de conocimiento que Wikipedia todavía no cubre. En esto Google tendría una oportunidad pero solamente si las personas y organizaciones que producen la información hicieran también sus propias ontologías, tal que Google pudiera acceder a ellas a través de su futuro motor de Web Semántica. Soy de la opinión que esto será así en el futuro pero que sucederá poco a poco y que Wikipedia puede tener listas las ontologías para todos los dominios de conocimiento con que ya cuenta mucho más rápido además de contar con la enorme ventaja de que ellos estarían a cargo de esas ontologías (la capa básica para permitir la IA).

    Todavía no esta claro, por supuesto, si la combinación de Wikipedia con la Web Semántica anuncia el fin de Google o el fin del principio. Como ya mencioné en el artículo original. Me parece que es la última opción, y que la pregunta que titula de este post, bajo el presente contexto, es meramente retórica. Sin embargo, podría equivocarme en mi juicio y puede que Google de paso a Wikipedia como la maquina definitiva de respuestas mundial.

    Después de todo, Wikipedia cuenta con “nosotros”. Google no. Wikipedia deriva su de poder de “nosotros”. Google deriva su poder de su tecnología y su inflado precio de mercado. ¿Con quien contarías para cambiar el mundo?

    Respuesta a Preguntas Básicas por parte de los Lectores
    El lector divotdave formulá unas cuantas preguntas que me parecen de naturaleza básica (es decir, importante). Creo que más personas se estarán preguntando las mismas cuestiones por lo que las incluyo con sus respectivas respuestas.

    Pregunta:
    ¿Como distinguir entre buena y mala información? Como determinar que partes del conocimiento humano aceptar y que parte rechazar?

    Respuesta:
    No es necesario distinguir entre buena y mala información (que no ha de confundirse con bien-formada vs. mal-formada) si se utiliza una fuente de información confiable (con ontologías confiables asociadas). Es decir, si la información o conocimiento que se busca se puede derivar de Wikipedia 3.0, entonces se asume que la información es confiable.

    Sin embargo, con respecto a como conectar los puntos al devolver información o deducir respuestas del inmenso mar de información que va más allá de Wikipedia, entonces la pregunta se vuelve muy relevante. Como se podría distinguir la buena información de la mala de forma que se pueda producir buen conocimiento (es decir, comprender información o nueva información producida a través del razonamiento deductivo basado en la información existente).

    Pregunta:
    Quien, o qué según sea el caso, determina que información es irrelevante para mí como usuario final?

    Respuesta:
    Esta es una buena pregunta que debe ser respondida por los investigadores que trabajan en los motores IA para la Web 3.0.

    Será necesario hacer ciertas suposiciones sobre que es lo que se está preguntando. De la misma forma en que tuve que suponer ciertas cosas sobre lo que realmente me estabas preguntando al leer tu pregunta, también lo tendrán que hacer los motores IA, basados en un proceso cognitivo muy similar al nuestro, lo cual es tema para otro post, pero que ha sido estudiado por muchos investigadores IA.

    Pregunta:
    ¿Significa esto en última instancia que emergerá un todopoderoso* estándar al cual toda la humanidad tendrá que adherirse (por falta de información alternativa)?

    Respuesta:
    No existe la necesidad de un estándar, excepto referente al lenguaje en el que se escribirán las ontologías (es decir, OWL, OWL-DL. OWL Full, etc.). Los investigadores de la Web Semántica intentan determinar la mejor opción, y la más usable, tomando en consideración el desempeño humano y de las máquinas al construir y –exclusivamente en el último caso- interpretar dichas ontologías.

    Dos o más agentes de información que trabajen con la misma ontología especifica de dominio pero con diferente software (diferente motor IA) pueden colaborar entre ellos. El único estándar necesario es el lenguaje de la ontología y las herramientas asociadas de producción.

    Anexo

    Sobre IA y el Procesamiento del Lenguaje Natural

    Me parece que la primera generación de IA que será usada por la Web 3.0 (conocido como Web Semántica) estará basada en motores de inferencia relativamente simples (empleando enfoques tanto algorítmicos como heurísticas) que no intentarán ningún tipo de procesamiento de lenguaje natural. Sin embargo, si mantendrán las capacidades de razonamiento deductivo formal descritas en este articulo.

    Sobre el debate acerca de La Naturaleza y Definición de IA

    La introducción de la IA en el ciber-espacio se hará en primer lugar con motores de inferencia (usando algoritmos y heurística) que colaboren de manera similar al P2P y que utilicen ontologías estándar. La interacción paralela entre cientos de millones de Agentes IA ejecutándose dentro de motores P2P de IA en las PCs de los usuarios dará cabida al complejo comportamiento del futuro cerebro global.

    Read Full Post »

    Evolving Trends

    July 19, 2006

    Towards Intelligent Findability

    (This post was last updated at 12:45pm EST, July 22, 06)

    By Eric Noam Rodriguez (versión original en español CMS Semántico)

    Editing and Addendum by Marc Fawzi

    A lot of buzz about Web 3.0 and Wikipedia 3.0 has been generagted lately by Marc Fawzi through this blog, so I’ve decided that for my first post here I’d like to dive into this idea and take a look at how to build a Semantic Content Management System (CMS). I know this blog has had a more of a visionary, psychological and sociological theme (i.e., the vision for the future and the Web’s effect on society, human relationships and the individual himself), but I’d like to show the feasibility of this vision by providing some technical details.

    Objective

     

    We want a CMS capable of building a knowledge base (that is a set of domain-specific ontologies) with formal deductive reasoning capabilities.

    Requirements

     

    1. A semantic CMS framework.
    2. An ontology API.
    3. An inference engine.
    4. A framework for building info-agents.

    HOW-TO

     

    The general idea would be something like this:

    1. Users use a semantic CMS like Semantic MediaWiki to enter information as well as semantic annotations (to establish semantic links between concepts in the given domain on top of the content) This typically produces an informal ontology on top of the information, which, when combined with domain inference rules and the query structures (for the particular schema) that are implemented in an independent info agent or built into the CMS, would give us a Domain Knowledge Database. (Alternatively, we can have users enter information into a non-semantic CMS to create content based on a given doctype or content schema and then front-end it with an info agent that works with a formal ontology of the given domain, but we would then need to perform natural language processing, including using statistical semantic models, since we would lose the certainty that would normally be provided by the semantic annotations that, in a Semantic CMS, would break down the natural language in the information to a definite semantic structure.)
    2. Another set of info agents adds to our knowledge base inferencing-based querying services for information on the Web or other domain-specific databases. User entered information plus information obtained from the web makes up our Global Knowledge Database.
    3. We provide a Web-based interface for querying the inference engine.

    Each doctype or schema (depending on the CMS of your choice) will have a more or less direct correspondence with our ontologies (i.e. one schema or doctype maps with one ontology). The sum of all the content of a particular schema makes up a knowledge-domain which when transformed into a semantic language like (RDF or more specifically OWL) and combined with the domain inference rules and the query structures (for the particular schema) constitute our knowledge database. The choice of CMS is not relevant as long as you can query its contents while being able to define schemas. What is important is the need for an API to access the ontology. Luckily projects like JENA fills this void perfectly providing both an RDF and an OWL API for Java.

    In addition, we may want an agent to add or complete our knowledge base using available Web Services (WS). I’ll assume you’re familiarized with WS so I won’t go into details.

     

    Now, the inference engine would seem like a very hard part. It is. But not for lack of existing technology: the W3C already have a recommendation language for querying RDF (viz. a semantic language) known as SPARQL (http://www.w3.org/TR/rdf-sparql-query/) and JENA already has a SPARQL query engine.

    The difficulty lies in the construction of ontologies which would have to be formal (i.e. consistent, complete, and thoroughly studied by experts in each knowledge-domain) in order to obtain powerful deductive capabilities (i.e. reasoning).

    Conclusion

    We already have technology powerful enough to build projects such as this: solid CMS, standards such as RDF, OWL, and SPARQL as well as a stable framework for using them such as JENA. There are also many frameworks for building info-agents but you don’t necessarily need a specialized framework, a general software framework like J2EE is good enough for the tasks described in this post.

    All we need to move forward with delivering on the Web 3.0 vision (see 1, 2, 3) is the will of the people and your imagination.

    Addendum

    In the diagram below, the domain-specific ontologies (OWL 1 … N) could be all built by Wikipedia (see Wikipedia 3.0) since they already have the largest online database of human knowledge and the domain experts among their volunteers to build the ontologies for each domain of human knowledge. One possible way is for Wikipedia will build informal ontologies using Semantic MediaWiki (as Ontoworld is doing for the Semantic Web domain of knowledge) but Wikipedia may wish to wait until they have the ability to build formal ontologies, which would enable more powerful machine-reasoning capabilities.

    [Note: The ontologies simply allow machines to reason about information. They are not information but meta-information. They have to be formally consistent and complete for best results as far as machine-based reasoning is concerned.]

    However, individuals, teams, organizations and corporations do not have to wait for Wikipedia to build the ontologies. They can start building their own domain-specific ontologies (for their own domains of knowledge) and use Google, Wikipedia, MySpace, etc as sources of information. But as stated in my latest edit to Eric’s post, we would have to use natural language processing in that case, including statistical semantic models, as the information won’t be pre-semanticized (or semantically annotated), which makes the task more dificult (for us and for the machine …)

    What was envisioned in the Wikipedia 3.0: The End of Google? article was that since Wikipedia has the volunteer resources and the world’s largest database of human knowledge then it will be in the powerful position of being the developer and maintainer of the ontologies (including the semantic annotations/statements embedded in each page) which will become the foundation for intelligence (and “Intelligent Findability”) in Web 3.0.

    This vision is also compatible with the vision for P2P AI (or P2P 3.0), where people will run P2P inference engines on their PCs that communicate and collaborate with each other and that tap into information form Google, Wikipedia, etc, which will ultimately push Google and central search engines down to the commodity layer (eventually making them a utility business just like ISPs.)

    Diagram

    Related

    1. Wikipedia 3.0: The End of Google? June 26, 2006
    2. Wikipedia 3.0: El fin de Google (traducción) July 12, 2006
    3. Web 3.0: Basic Concepts June 30, 2006
    4. P2P 3.0: The People’s Google July 11, 2006
    5. Why Net Neutrality is Good for Web 3.0 July 15, 2006
    6. Intelligence (Not Content) is King in Web 3.0 July 17, 2006
    7. Web 3.0 Blog Application July 18, 2006
    8. Semantic MediaWiki July 12, 2006
    9. Get Your DBin July 12, 2006

    Enjoyed this analysis? You may share it with others on:

    digg.png newsvine.png nowpublic.jpg reddit.png blinkbits.png co.mments.gif stumbleupon.png webride.gif del.icio.us

    Tags:

    Semantic Web, Web strandards, Trends, OWL, innovation, Startup, Google, GData, inference engine, AI, ontology, Semantic Web, Web 2.0, Web 2.0, Web 3.0, Web 3.0, Google Base, artificial intelligence, AI, Wikipedia, Wikipedia 3.0, Ontoworld, Wikipedia AI, Info Agent, Semantic MediaWiki, DBin, P2P 3.0, P2P AI, AI Matrix, P2P Semantic Web inference Engine, semantic blog, intelligent findability, JENA, SPARQL, RDF, OWL

     

    Read Full Post »

    %d bloggers like this: