Feeds:
Posts
Comments

Archive for the ‘Relationship’ Category

From Logic to Ontology: The limit of “The Semantic Web”

 

 

(Some post are written in English and Spanish language) 

http://www.linkedin.com/answers/technology/web-development/TCH_WDD/165684-18926951 

From Logic to Ontology: The limit of “The Semantic Web” 

 http://en.wikipedia.org/wiki/Undecidable_problem#Other_problems

If you read the next posts on this blog: 

Semantic Web

The Semantic Web

What is the Semantic Web, Actually?

The Metaweb: Beyond Weblogs. From the Metaweb to the Semantic Web: A Roadmap

Semantics to the people! ontoworld

What’s next for the Internet

Web 3.0: Update

How the Wikipedia 3.0: The End of Google? article reached 2 million people in 4 days!

Google vs Web 3.0

Google dont like Web 3.0 [sic] Why am I not surprised?

Designing a better Web 3.0 search engine

From semantic Web (3.0) to the WebOS (4.0)

Search By Meaning

A Web That Thinks Like You

MINDING THE PLANET: THE MEANING AND FUTURE OF THE SEMANTIC WEB

The long-promised “semantic” web is starting to take shape

Start-Up Aims for Database to Automate Web Searching

Metaweb: a semantic wiki startup

http://www.freebase.com/

The Semantic Web, Collective Intelligence and Hyperdata.

Informal logic 

Logical argument

Consistency proof 

Consistency proof and completeness: Gödel’s incompleteness theorems

Computability theory (computer science): The halting problem

Gödel’s incompleteness theorems: Relationship with computability

Non-formal or Inconsistency Logic: LACAN’s LOGIC. Gödel’s incompleteness theorems,

You will realize the internal relationship between them linked from Logic to Ontology.  

I am writing from now on an article about the existence of the semantic web.  

I will prove that it does not exist at all, and that it is impossible to build from machines like computers.  

It does not depend on the software and hardware you use to build it: You cannot do that at all! 

You will notice the internal relations among them, and the connecting thread is the title of this post: “Logic to ontology.”   

I will prove that there is no such construction, which can not be done from the machines, and that does not depend on the hardware or software used.  

More precisely, the limits of the semantic web are not set by the use of machines themselves and biological systems could be used to reach this goal, but as the logic that is being used to construct it does not contemplate the concept of time, since it is purely formal logic and metonymic lacks the metaphor, and that is what Gödel’s theorems remark, the final tautology of each construction or metonymic language (mathematical), which leads to inconsistencies. 

This consistent logic is completely opposite to the logic that makes inconsistent use of time, inherent of human unconscious, but the use of time is built on the lack, not on positive things, it is based on denials and absences, and that is impossible to reflect on a machine because of the perceived lack of the required self-awareness is acquired with the absence.  

The problem is we are trying to build an intelligent system to replace our way of thinking, at least in the information search, but the special nature of human mind is the use of time which lets human beings reach a conclusion, therefore does not exist in the human mind the halting problem or stop of calculation.  

So all efforts faced toward semantic web are doomed to failure a priori if the aim is to extend our human way of thinking into machines, they lack the metaphorical speech, because only a mathematical construction, which will always be tautological and metonymic, and lacks the use of the time that is what leads to the conclusion or “stop”.  

As a demonstration of that, if you suppose it is possible to construct the semantic web, as a language with capabilities similar to human language, which has the use of time, should we face it as a theorem, we can prove it to be false with a counter example, and it is given in the particular case of the Turing machine and “the halting problem”.  

Then as the necessary and sufficient condition for the theorem is not fulfilled, we still have the necessary condition that if a language uses time, it lacks formal logic, the logic used is inconsistent and therefore has no stop problem.

This is a necessary condition for the semantic web, but it is not enough and therefore no machine, whether it is a Turing Machine, a computer or a device as random as a black body related to physics field, can deal with any language other than mathematics language hence it is implied that this language is forced to meet the halting problem, a result of Gödel theorem.   

De la lógica a la ontología: El límite de la “web semántica”  

Si lee los siguientes artículos de este blog: 

http://es.wikipedia.org/wiki/Web_sem%C3%A1ntica  

Wikipedia 3.0: El fin de Google (traducción Spanish)

Lógica 

Lógica Consistente y completitud: Teoremas de la incompletitud de Gödel (Spanish)

Consistencia lógica (Spanish)

Teoría de la computabilidad. Ciencia de la computación.

Teoremas de la incompletitud de Gödel y teoría de la computación: Problema de la parada 

Lógica inconsistente e incompletitud: LOGICAS LACANIANAS y Teoremas de la incompletitud de Gödel (Spanish)  

Jacques Lacan (Encyclopædia Britannica Online)

Usted puede darse cuenta de las relaciones internas entre ellos, y el hilo conductor es el título de este mismo post: “de la lógica a la ontología”.  

Probaré que no existe en absoluto tal construcción, que no se puede hacer desde las máquinas, y que no depende ni del hardware ni del software utilizado.   

Matizando la cuestión, el límite de la web semántica está dado no por las máquinas y/o sistemas biológicos que se pudieran usar, sino porque la lógica con que se intenta construir carece del uso del tiempo, ya que la lógica formal es puramente metonímica y carece de la metáfora, y eso es lo que marcan los teoremas de Gödel, la tautología final de toda construcción y /o lenguaje metonímico (matemático), que lleva a contradicciones.  

Esta lógica consistente es opuesta a la lógica inconsistente que hace uso del tiempo, propia del insconciente humano, pero el uso del tiempo está construido en base a la falta, no en torno a lo positivo sino en base a negaciones y ausencias, y eso es imposible de reflejar en una máquina porque la percepción de la falta necesita de la conciencia de sí mismo que se adquiere con la ausencia.   

El problema está en que pretendemos construir un sistema inteligente que sustituya nuestro pensamiento, al menos en las búsquedas de información, pero la particularidad de nuestro pensamiento humano es el uso del tiempo el que permite concluir, por eso no existe en la mente humana el problema de la parada o detención del cálculo, o lo que es lo mismo ausencia del momento de concluir.  

Así que todos los esfuerzos encaminados a la web semántica están destinados al fracaso a priori si lo que se pretende es prolongar nuestro pensamiento humano en las máquinas, ellas carecen de discurso metafórico, pues sólo son una construcción matemática, que siempre será tautológica y metonímica, ya que además carece del uso del tiempo que es lo que lleva al corte, la conclusión o la “parada”.  

Como demostración vale la del contraejemplo, o sea que si suponemos que es posible construir la web semántica, como un lenguaje con capacidades similares al lenguaje humano, que tiene el uso del tiempo, entonces si ese es un teorema general, con un solo contraejemplo se viene abajo, y el contraejemplo está dado en el caso particular de la máquina de Turing y el “problema de la parada”.  

Luego no se cumple la condición necesaria y suficiente del teorema, nos queda la condición necesaria que es que si un lenguaje tiene el uso del tiempo, carece de lógica formal, usa la lógica inconsistente y por lo tanto no tiene el problema de la parada”, esa es condición necesaria para la web semántica, pero no suficiente y por ello ninguna máquina, sea de Turing, computador o dispositivo aleatorio como un cuerpo negro en física, puede alcanzar el uso de un lenguaje que no sea el matemático con la paradoja de la parada, consecuencia del teorema de Gödel.

Jacques Lacan (Encyclopædia Britannica Online)

Read Full Post »

Gödel’s incompleteness theorems

From Wikipedia, the free encyclopedia

[edit] Relationship with computability

As early as 1943, Kleene gave a proof of Godel’s incompleteness theorem using basic results of computability theory.[8] A basic result of computability shows that the halting problem is unsolvable: there is no computer program that can correctly determine, given a program P as input, whether P eventually halts when run with no input. Kleene showed that the existence of a complete effective theory of arithmetic with certain consistency properties would force the halting problem to be decidable, a contradiction. An exposition of this proof at the undergraduate level was given by Charlesworth (1980).[9]

By enumerating all possible proofs, it is possible to enumerate all the provable consequences of any effective first-order theory. This makes is possible to search for proofs of a certain form. Moreover, the method of arithmetization introduced by Gödel can be used to show that any sufficiently strong theory of arithmetic can represent the workings of computer programs. In particular, for each program P there is a formula Q such that Q expresses the idea that P halts when run with no input. The formula Q says, essentially, that there is a natural number that encodes the entire computation history of P and this history ends with P halting.

If, for every such formula Q, either Q or the negation of Q was a logical consequence of the axiom system, then it would be possible, by enumerating enough theorems, to determine which of these is the case. In particular, for each program P, the axiom system would either prove “P halts when run with no input,” or “P doesn’t halt when run with no input.”

Consistency assumptions imply that the axiom system is correct about these theorems. If the axioms prove that a program P doesn’t halt when the program P actually does halt, then the axiom system is inconsistent, because it is possible to use the complete computation history of P to make a proof that P does halt. This proof would just follow the computation of P step-by-step until P halts after a finite number of steps.

The mere consistency of the axiom system is not enough to obtain a contradiction, however, because a consistent axiom system could still prove the ω-inconsistent theorem that a program halts, when it actually doesn’t halt. The assumption of ω-consistency implies, however, that if the axiom system proves a program doesn’t halt then the program actually does not halt. Thus if the axiom system was consistent and ω-consistent, its proofs about which programs halt would correctly reflect reality. Thus it would be possible to effectively decide which programs halt by merely enumerating proofs in the system; this contradiction shows that no effective, consistent, ω-consistent formal theory of arithmetic that is strong enough to represent the workings of a computer can be complete.

Read Full Post »

%d bloggers like this: